Java并发编程的艺术06

以下是《java并发编程的艺术》一书的读书笔记最后一部分。

Executor框架

结构

Executor框架主要由3大部分组成如下:

  • 任务。包括被执行任务需要实现的接口:Runnable接口或Callable接口。
  • 任务的执行。包括任务执行机制的核心接口Executor,以及继承自Executor的ExecutorService接口。Executor框架有两个关键类实现了ExecutorService接口(ThreadPoolExecutor和ScheduledThreadPoolExecutor)。
  • 异步计算的结果。包括接口Future和实现Future接口的FutureTask类。

Executor框架工作流程

上图为Executor框架的工作原理。

主线程首先要创建实现Runnable或者Callable接口的任务对象。工具类Executors可以把一个Runnable对象封装为一个Callable对象(Executors.callable(Runnable task)或 Executors.callable(Runnable task,Object resule))。

然后可以把Runnable对象直接交给ExecutorService执行(ExecutorService.execute(Runnablecommand));或者也可以把Runnable对象或Callable对象提交给ExecutorService执行ExecutorService.submit(Runnable task)或ExecutorService.submit(Callabletask))。

如果执行ExecutorService.submit(…),ExecutorService将返回一个实现Future接口的对象(到目前为止的JDK中,返回的是FutureTask对象)。由于FutureTask实现了Runnable,程序员也可以创建FutureTask,然后直接交给ExecutorService执行。

最后,主线程可以执行FutureTask.get()方法来等待任务执行完成。主线程也可以执行FutureTask.cancel(boolean mayInterruptIfRunning)来取消此任务的执行。

Executor框架的成员

ThreadPoolExecutor

ThreadPoolExecutor通常使用工厂类Executors来创建。Executors可以创建3种类型的ThreadPoolExecutor:SingleThreadExecutor、FixedThreadPool和CachedThreadPool。

  • FixedThreadPool适用于为了满足资源管理的需求,而需要限制当前线程数量的应用场景,它适用于负载比较重的服务器。
  • SingleThreadExecutor适用于需要保证顺序地执行各个任务;并且在任意时间点,不会有多个线程是活动的应用场景。
  • CachedThreadPool是大小无界的线程池,适用于执行很多的短期异步任务的小程序,或者是负载较轻的服务器。
ScheduledThreadPoolExecutor

ScheduledThreadPoolExecutor通常使用工厂类Executors来创建。Executors可以创建2种类型的ScheduledThreadPoolExecutor。它主要用来在给定的延迟之后运行任务,或者定期执行任务。ScheduledThreadPoolExecutor的功能与Timer类似,但ScheduledThreadPoolExecutor功能更强大、更灵活。

  • ScheduledThreadPoolExecutor,包含若干个线程的ScheduledThreadPoolExecutor。适用于需要多个后台线程执行周期任务,同时为了满足资源管理的需求而需要限制后台线程的数量的应用场景。
  • SingleThreadScheduledExecutor,只包含一个线程的ScheduledThreadPoolExecutor。SingleThreadScheduledExecutor适用于需要单个后台线程执行周期任务,同时需要保证顺序地执行各个任务的应用场景。
Future接口

Future接口和实现Future接口的FutureTask类用来表示异步计算的结果。当我们把Runnable接口或Callable接口的实现类提交(submit)给ThreadPoolExecutor或
ScheduledThreadPoolExecutor时,ThreadPoolExecutor或ScheduledThreadPoolExecutor会向我们返回一个FutureTask对象。

FutureTask除了实现Future接口外,还实现了Runnable接口。因此,FutureTask可以交给Executor执行,也可以由调用线程直接执行(FutureTask.run())。根据FutureTask.run()方法被执行的时机,FutureTask可以处于下面3种状态。

  1. 未启动。FutureTask.run()方法还没有被执行之前,FutureTask处于未启动状态。当创建一个FutureTask,且没有执行FutureTask.run()方法之前,这个FutureTask处于未启动状态。
  2. 已启动。FutureTask.run()方法被执行的过程中,FutureTask处于已启动状态。
  3. 已完成。FutureTask.run()方法执行完后正常结束,或被取消(FutureTask.cancel(…)),或执行FutureTask.run()方法时抛出异常而异常结束,FutureTask处于已完成状态。

FutureTask状态迁移

FutureTask处于未启动或已启动状态时,执行FutureTask.get()方法将导致调用线程阻塞;当FutureTask处于已完成状态时,执行FutureTask.get()方法将导致调用线程立即返回结果或抛出异常。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public class FutureTaskTest {
public static void main(String[] args) {
//第一种方式
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
executor.submit(futureTask);
executor.shutdown();

//第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
/*Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
Thread thread = new Thread(futureTask);
thread.start();*/

try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}

System.out.println("主线程在等待结果");

try {
System.out.println("task运行结果" + futureTask.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}

System.out.println("所有任务执行完毕");
}
}

class Task implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("子线程在进行计算");
Thread.sleep(3000);
int sum = 0;
for (int i = 0; i < 100; i++) {
sum += i;
}
return sum;
}
}

上面的程序输出如下,可以看到,主线程在等待结果之前一直阻塞,结果返回后继续执行。

1
2
3
4
子线程在进行计算
主线程在等待结果
task运行结果4950
所有任务执行完毕
Runnable接口和Callable接口

Runnable接口和Callable接口的实现类,都可以被ThreadPoolExecutor或ScheduledThreadPoolExecutor执行。它们之间的区别是Runnable不会返回结果,而Callable可以返回结果。